Adatbányászat Blog

Az Adatbányász Blogon a dmlab szakértőinek írásait olvashatod a big data és data science területéről.

dmlab.hu - Big data és data science tanácsadás
"Ha örülsz, hogy fejedre nőttek az adatok."

Keress minket bátran:
- Nagy-Rácz István +36704595669
- Gáspár Csaba +36208234154
- info@dmlab.hu

Hírlevél

Iratkozz fel hírlevelünkre, hogy mindig naprakészen tudjunk tájékoztatni.
Feliratkozás
Leiratkozás

Címkék

10éves (1) 2007 (1) 2010 (23) 2011 (27) 2012 (13) 2013 (23) 2014 (5) 2015 (6) 2016 (10) 2017 (4) 2018 (2) adaptív (1) adat- és médiainformatika (1) adatárusítás (1) adatbányászat (10) adatbányászati algoritmusok (1) adatbányászati alkalmazások (2) adatbányászati meetup (1) adatbányászati oktatás (1) adatbányászati technológiák (4) adatelemzés (1) adatelemzési platformok (1) adattárház (5) adattárház fórum (6) adattárolás (1) adattisztítás (1) adatvédelem (2) advise (2) aegon (1) aglitás (1) agy (2) ajánló (11) ajánlórendszerek (1) aktivitás felismerés (1) algoritmus (1) alkalmazás (3) állásajánlat (1) amazon ec2 (1) ambiens (1) ami (1) analitika (1) analytics (1) andego (3) apache (1) api (2) Arató Bence (3) bank (1) Barabási (2) barabási (2) beharangazó (1) beharangozó (18) bejelentés (2) belami (1) best practice (9) beszámoló (14) bi (13) BI (3) Bi (1) bi-trek (1) biconsulting (7) bigdata (24) Big Data (3) big data (6) biopen (1) biztosító (1) BI Akadémia (1) bi consulting (1) bi start (1) blog (5) bme (2) BME (14) bootcamp (1) brainstorming (1) bsp (1) budapest (1) business analytics (1) business analytics szakirány (1) churn (2) ci (1) címkefelhő (2) CIO (1) clementine (1) Clementine Consulting (1) cloud computing (2) cognos (1) credit scoring (1) crisp-dm (1) crm (2) csalásdetektálás (1) DataExpert (1) dataexplorer (1) datapest (1) datascience (2) data mining (1) data science (6) diplomamunka (1) dmla1o (1) dmlab (12) döntési fák (1) drill (1) e-commerce (1) előadás (22) előrejelzés (1) élő közvetítés (1) Enbrite.ly (1) energetika (1) esemény (2) esettanulmány (3) etikus (1) etl (2) évforduló (2) fejlesztés (2) felmérés (5) felsőoktatás (1) felület (1) felvásárlás (3) film (1) fizetés (1) forecasting (1) forgalomelőrejelzés (2) foursquare (1) fraud detection (1) freebase (1) gartner (2) gazdasagi informatikus (2) gépi tanulás (4) google (8) google analytics (1) graphlab (1) gravity (3) greenplum (1) gyakorlat (1) hadoop (10) hallgatók (2) hálózatelemzés (3) hálózatkutatás (2) hálózatok (3) hazai (2) hiba (4) hírlevél (2) hive (1) honlap (1) HR (1) HVG (1) i5 (1) ibm (6) ibm modeler (1) ibm spss (3) icdm (1) idc (2) idősor (1) idősorok (1) ieee (1) iir (1) infobright (1) információbróker (1) innováció (5) innovatívBI (1) innovativ bi (4) inspiráció (1) intelligencia (2) Internet Hungary (1) iqsymposium (19) iqsys (16) iroda (4) jelentkezés (2) jmp (2) job (1) kaggle (2) kampánymenedzsment (1) kapcsolati hálók (1) karrier (1) kdd (3) kdnuggets (2) képzés (4) kérdés (2) kérdőív (1) kerekasztal (1) keresés (1) kereső (1) keresztvalidáció (4) klaszterezés (2) knime (1) kockázati tőke (1) kollaboratív munka (1) kompetencia (1) konferencia (70) könyv (6) környezet (1) közlekedés (1) közösség (2) közösségi hálózatok (4) közvetítés (6) kritika (1) küldetés (1) kürt akadémia (1) kutatás (2) lemorzsolódás (1) licensz (1) live (1) logisztika (1) magyar telekom (2) mahout (1) mapreduce (1) marketplace (1) média (2) meetup (11) mellékspecializáció (1) mém (3) memóriacentrikus (1) menedzsment (3) metaadat (1) metodika (2) microsoft (1) mobil (5) mobil bi (4) modeler (2) modell (3) morgan stanley (1) motion chart (1) munkaerő (2) mysql (1) mytraffic (4) nemzetközi (5) nemzetközi összehasonlítás (1) netflix prize (1) networking (1) next big thing (1) nips (1) nosql (1) nyílt forráskód (4) nyomkövetés (1) offline áruházak (1) okostelefon (1) oktatás (23) olvasók (1) online áruházak (1) online kutatás (1) open source (19) open source bi (3) operatorfa (1) osbi (12) összehasonlítás (1) ötletek (2) pandas (2) paradoxon (1) pascal (1) pentaho (1) personal data mining (1) phd (2) philips (1) piac (3) pikk (1) pilot (1) PISA-felmérés (1) pmml (1) politika (2) powerpivot (1) prága (1) praktiker (1) prediktív analitika (2) prediktív analitka (1) prediktiv modellezés (5) prediktív modellezés (1) prezi (15) privacy (1) privacy preserving data mining (1) projekt (1) projektmenedzsment (5) publikáció (1) python (9) radoop (12) random forest (1) rapid-i (2) rapidanalytics (7) RapidMiner (2) rapidminer (40) rcomm (7) refine (1) Rexer Analytics (1) rsctc (1) R nyelv (7) saas (1) sap (1) SAS (20) sas enterprise miner (2) sas enterpris guide (1) sas entprise miner (1) sas fórum (1) sas forum (3) siker (3) simptech (1) sixtep (2) smarthabits (1) spike sorting (1) sportanalitika (1) SPSS (3) spss (13) spss clementine (3) spss hungary (5) spss modeler (6) ssd (1) starschema (2) startup (9) statisztika (1) survey (1) svm (1) szabad szoftver (1) szakmai (1) szavazó eljárások (2) szélenergia (1) szélerőmű (1) szervezetfejlesztés (2) szociális hálók (1) szoftver (5) szöveg (1) szövegbányászat (2) sztaki (2) tableau (1) talend (2) támogatás (1) tanulmány (1) tanulság (1) távolság (1) technológia (1) tedx (1) telekommunikáció (2) teradata (2) teszt (1) text mining (1) tmit (6) toborzás (1) tőzsdei előrejelzés (1) tracking (1) trendek (8) tudományos (1) tunedit (1) twitter (17) ügyfél (1) üzleti intelligencia (3) üzleti modell (3) üzleti reggeli (3) választható tárgy (1) validáció (4) válogatás (1) válság (1) változás (1) vélemény (1) véleméy (1) verseny (20) vezetői képzés (1) videó (3) vizualizáció (5) web (4) web2 (2) webanalitika (3) webshop (1) weka (2) wikipedia (2) workshop (1) yahoo (2) Címkefelhő

TWitter a csapat tagjaitól

2018.01.11. 17:38 Gáspár Csaba

Milyen lépések mentén tudod bevezetni a céged a big data világába

Címkék: 2018 metodika bigdata big data data science Big Data datascience

Egy szervezetfejlesztési workshop során össze kellett gyűjtenünk, hogy milyen módon közelednek a big data világához az általunk támogatott cégek. Egy izgalmas ív került felrajzolásra, ami különösen tanulságos azoknak, akik érzik, szeretnének 2018-ban előrébb lépni az adatok adta lehetőségek kihasználásában. 

a.jpeg

A folyamatot öt fő lépésre lehet bontani:

  1. Lendület és lelkesedés megszerzése - Első lépésben nyitottságra és lelkesedésre van szükség, hogy megmozduljon valami. Ez általában két lépésben történik, először a cég vagy szervezeti egység egyik meghatározó egyénisége rákap a big data ízére: olvas egy jó cikket a neten, egy lelkesítő előadást hall egy konferencián, vagy egyszerűen beleszeret a témába egy régen látott rokonnal beszélgetve. Ezt a lelkesedést általában érdemes kicsit átragasztani a többi szereplőre is, erre remek lehetőségeket adnak a különböző olyan belső workshopok, ahol egy általános big data előadással alapozzuk meg a kollégák pozitív hozzáállását az ügyhöz (ilyen előadásokat mi is szoktunk vállalni, de erről majd később). 
  2. Kompetencia gyűjtése - Kellő induló lendület után a big data világához kapcsolódó kompetenciák gyűjtése a cél. Ez lehet új munkatársak bevonása is, de akár belső adatelemzési kurzusok, vagy megfelelő külső partnerekkel való bizalmi kapcsolat kialakítása is ide kapcsolódik. 
  3. Validáció - A következő fázisban a kompetenciákra támaszkodva kiválasztásra kerül, hogy milyen fajta folyamatokat érdemes átalakítani adatvezérelté. Ez egy részben üzleti feladat, hiszen azt is vizsgálni kell, hogy elérhetőek-e azok az adatok már a cégen belül, amik kulcsszerepet kapnak a ebben a megközelítésben. Itt konkrét adatelemzési feladatok ritkán valósulnak meg, sokkal inkább az újszerű, innovatív adatfelhasználás létjogosultságát kell ellenőrizni.
  4. Proof-of-concept - Ha tudjuk, hol lenne érdemes a big data módszereket használni, nem egy rendszert kell egyből építeni: sokkal fontosabb, hogy ellenőrizzük, hogy megfelelő szinten megoldható-e az data science feladat, amit kitűztünk magunk elé. Ekkor tipikusan historikus adatokon bizonyítjuk, hogy egy jó adatelemzési módszerrel elérhető az üzleti értelemben vett előrelépés az adott módszerrel. Az data science feladatok megoldásán, a gépi tanulási eljárások futtatásán túl ekkor lehet pontosabb megtérülési számításokat is végezni.
  5. Rendszer építése - Ha bizonyításra került, hogy a gépi tanulási eljárásokkal korábban is tudtunk volna előnyöket elérni, akkor érdemes ezeket a jelenben és a jövőben meg is szerezni. Ehhez egy olyan rendszert kell építeni, ami a big data megoldást folyamatosan üzemelteti, időről-időről időre ellenőrzi működését, számszerűsíti az általa elért többletet. Sokan azt hiszeik, hogy ez már csak egy apró lépés az előző pont után, de a valóság az, hogy ami a már ismert múltbeli adatokon jól működött, az jelentős mennyiségű fejlesztést és integrációs feladatot követelhet, ha egy teljes rendszerbe kell azt integrálni. 

Látható, hogy az öt lépés során bárhol el tud akadni a folyamat. Vagy azért, mert a prioritások máshova viszik a fókuszt, és nem szerzi meg a cég a megfelelő kompetenciát, vagy mert a proof-of-concept megoldás eredménye nem jelzi egyértelműen, hogy érdemes egy új rendszert építeni.

Ugyanakkor a fenti modell abban tényleg nagyon sokat segít, hogy azonosítani lehessen, mire is van valakinek szüksége. Például, ha még csak lelkes vagy a big data világa iránt, nem feltétlenül kell még egy konkrét technológia, platform mellett elköteleződnöd, ráérsz ezt majd a 4. és 5. pont között megtenni - még akkor sem, ha úgy gondolod, hogy egyből olyan kompetenciákat akarsz megszerezni, ami a majdani technológiákhoz szervesen kapcsolódik. 

Ha te is éppen a big data világába szeretnéd jobban bevinni a céged, érdemes elgondolkodni, hogy hol is tartasz a fenti folyamatban, és arra fókuszálni, ahol ténylegesen vagy. Tapasztalataink szerint nem érdemes kihagyni egyetlen fejlődési fázist sem, később ez mindig megbosszulja magát. 

Szívesen írunk a fenti fázisokról még tapasztalatokat, áruld el nekünk, neked melyik fázis izgalmas éppen:

Melyik lépést fejtsük ki bővebben - Szavazás

(Kép forrása)

Szólj hozzá!

A bejegyzés trackback címe:

https://adatbanyaszat.blog.hu/api/trackback/id/tr9813566853

Kommentek:

A hozzászólások a vonatkozó jogszabályok  értelmében felhasználói tartalomnak minősülnek, értük a szolgáltatás technikai  üzemeltetője semmilyen felelősséget nem vállal, azokat nem ellenőrzi. Kifogás esetén forduljon a blog szerkesztőjéhez. Részletek a  Felhasználási feltételekben és az adatvédelmi tájékoztatóban.

Nincsenek hozzászólások.