Adatbányászat Blog

Az Adatbányász Blogon a dmlab szakértőinek írásait olvashatod a big data és data science területéről.

dmlab.hu - Big data és data science tanácsadás
"Ha örülsz, hogy fejedre nőttek az adatok."

Keress minket bátran:
- Nagy-Rácz István +36704595669
- Gáspár Csaba +36208234154
- info@dmlab.hu

Hírlevél

Iratkozz fel hírlevelünkre, hogy mindig naprakészen tudjunk tájékoztatni.
Feliratkozás
Leiratkozás

Címkék

10éves (1) 2007 (1) 2010 (23) 2011 (27) 2012 (13) 2013 (23) 2014 (5) 2015 (6) 2016 (10) 2017 (4) 2018 (4) adaptív (1) adat- és médiainformatika (1) adatárusítás (1) adatbányászat (10) adatbányászati algoritmusok (1) adatbányászati alkalmazások (2) adatbányászati meetup (1) adatbányászati oktatás (1) adatbányászati technológiák (4) adatelemzés (1) adatelemzési platformok (1) adattárház (5) adattárház fórum (6) adattárolás (1) adattisztítás (1) adatvédelem (2) advise (2) aegon (1) aglitás (1) agy (2) ajánló (11) ajánlórendszerek (1) aktivitás felismerés (1) algoritmus (1) alkalmazás (3) állásajánlat (1) amazon ec2 (1) ambiens (1) ami (1) amuse (1) analitika (1) analytics (1) andego (3) apache (1) api (2) Arató Bence (3) artificial intelligence (1) bank (1) Barabási (2) barabási (2) beharangazó (1) beharangozó (18) bejelentés (2) belami (1) best practice (9) beszámoló (15) BI (3) bi (13) Bi (1) bi-trek (1) biconsulting (7) bigdata (25) Big Data (3) big data (7) biopen (1) biztosító (1) BI Akadémia (1) bi consulting (1) bi start (1) blog (6) BME (14) bme (2) bootcamp (1) brainstorming (1) bsp (1) budapest (1) business analytics (1) business analytics szakirány (1) churn (2) ci (1) címkefelhő (2) CIO (1) clementine (1) Clementine Consulting (1) cloud computing (2) cognos (1) credit scoring (1) crisp-dm (1) crm (2) Cruncconf (1) crunch (2) csalásdetektálás (1) DataExpert (1) dataexplorer (1) datapest (1) datascience (2) datasource (1) data engineering (1) data mining (1) data science (7) diplomamunka (1) dmla1o (1) dmlab (12) döntési fák (1) drill (1) e-commerce (1) előadás (22) előrejelzés (1) élő közvetítés (1) Enbrite.ly (1) energetika (1) esemény (2) esettanulmány (3) ethics (1) etikus (1) etl (2) évforduló (3) fejlesztés (2) felmérés (5) felsőoktatás (1) felület (1) felvásárlás (3) film (1) fizetés (1) forecasting (1) forgalomelőrejelzés (2) foursquare (1) fraud detection (1) freebase (1) gartner (2) gazdasagi informatikus (2) gépi tanulás (4) gépi tanuló algoritmus (1) google (8) google analytics (1) graphlab (1) gravity (3) greenplum (1) gyakorlat (1) hadoop (10) hallgatók (2) hálózatelemzés (3) hálózatkutatás (2) hálózatok (3) hazai (2) hiba (4) hírlevél (2) hive (1) honlap (1) HR (1) HVG (1) i5 (1) ibm (6) ibm modeler (1) ibm spss (3) icdm (1) idc (2) idősor (1) idősorok (1) ieee (1) iir (1) impact (1) infobright (1) információbróker (1) innováció (5) innovatívBI (1) innovativ bi (4) inspiráció (1) intelligencia (2) Internet Hungary (1) iqsymposium (19) iqsys (16) iroda (4) jelentkezés (2) jmp (2) job (1) kaggle (2) kampánymenedzsment (1) kapcsolati hálók (1) karrier (1) kdd (3) kdnuggets (2) képzés (4) kérdés (2) kérdőív (1) kerekasztal (1) keresés (1) kereső (1) keresztvalidáció (4) klaszterezés (2) knime (1) kockázati tőke (1) kollaboratív munka (1) kompetencia (1) konferencia (72) könyv (6) környezet (1) közlekedés (1) közösség (2) közösségi hálózatok (4) közvetítés (6) kritika (1) küldetés (1) kürt akadémia (1) kutatás (2) lemorzsolódás (1) licensz (1) live (1) logisztika (1) machine learning (1) magyar telekom (2) mahout (1) mapreduce (1) marketplace (1) média (2) meetup (11) mellékspecializáció (1) mém (3) memóriacentrikus (1) menedzsment (3) metaadat (1) metodika (2) microsoft (1) mobil (5) mobil bi (4) modeler (2) modell (3) morgan stanley (1) motion chart (1) munkaerő (2) mysql (1) mytraffic (4) nemzetközi (5) nemzetközi összehasonlítás (1) netflix prize (1) networking (1) next big thing (1) nips (1) nosql (1) nyílt forráskód (4) nyomkövetés (1) offline áruházak (1) okostelefon (1) oktatás (23) olvasók (1) online áruházak (1) online kutatás (1) open source (19) open source bi (3) operatorfa (1) osbi (12) összehasonlítás (1) ötletek (2) pandas (2) paradoxon (1) pascal (1) pentaho (1) personal data mining (1) phd (2) philips (1) piac (3) pikk (1) pilot (1) PISA-felmérés (1) pmml (1) politika (2) powerpivot (1) prága (1) praktiker (1) prediktív analitika (2) prediktív analitka (1) prediktiv modellezés (5) prediktív modellezés (1) prezi (15) privacy (1) privacy preserving data mining (1) product management (1) projekt (1) projektmenedzsment (6) publikáció (1) python (9) radoop (12) random forest (1) rapid-i (2) rapidanalytics (7) rapidminer (40) RapidMiner (2) rcomm (7) refine (1) Rexer Analytics (1) rsctc (1) R nyelv (7) saas (1) sap (1) SAS (20) sas enterprise miner (2) sas enterpris guide (1) sas entprise miner (1) sas fórum (1) sas forum (3) siker (3) simptech (1) sixtep (2) smarthabits (1) spike sorting (1) sportanalitika (1) spss (13) SPSS (3) spss clementine (3) spss hungary (5) spss modeler (6) ssd (1) starschema (2) startup (9) statisztika (1) survey (1) svm (1) szabad szoftver (1) szakmai (1) szavazó eljárások (2) szélenergia (1) szélerőmű (1) szervezetfejlesztés (2) szociális hálók (1) szoftver (5) szöveg (1) szövegbányászat (2) sztaki (2) tableau (1) talend (2) támogatás (1) tanulmány (1) tanulság (1) távolság (1) technológia (1) tedx (1) telekommunikáció (2) teradata (2) teszt (1) text mining (1) tmit (6) toborzás (1) tőzsdei előrejelzés (1) tracking (1) trendek (9) tudományos (1) tunedit (1) twitter (17) ügyfél (1) üzleti intelligencia (3) üzleti modell (3) üzleti reggeli (3) választható tárgy (1) validáció (4) válogatás (1) válság (1) változás (1) vélemény (1) véleméy (1) verseny (20) vezetői képzés (1) videó (3) vizualizáció (5) web (4) web2 (2) webanalitika (3) webshop (1) weka (2) wikipedia (2) workshop (1) yahoo (2) Címkefelhő

TWitter a csapat tagjaitól

2010.08.25. 20:44 Prekopcsák Zoltán

Modellkiértékelési hibák - 3. rész

Címkék: hiba prediktiv modellezés keresztvalidáció validáció

Ebben a posztsorozatban olyan modellkiértékelési hibákat mutatunk be, amelyek jelentősen torzíthatják egy modell pontosságbecslését. A téma bevezetése és a keresztvalidáció bemutatása a nyitó bejegyzésben található, az első részben a validáció előtti tanulás problémáját jártuk körbe, a második részben pedig a jövőbeli információ használatáról volt szó.

A harmadik és egyben leggyakoribb modellkiértékelési hiba a legjobb modell választása. Elsőre abszurdnak tűnik a felvetés, hogy mi gond lehet azzal, ha a kiértékelt modellek közül a legjobbat választjuk, úgyhogy egy példával illusztráljuk a problémát.

Vegyünk egy 100 adatsort tartalmazó adathalmazt, amelyen bináris osztályozást szeretnénk végezni. Ezen az adathalmazon 100 darab különböző modellt fogunk kiértékelni a COIN modellcsaládból. COIN modellt már mindenki használt, működési elve nagyon egyszerű: vegyünk egy pénzérmét, dobjuk fel, és fej esetén szavazzuk a pozitív osztályra, írás esetén a negatívra. Egyértelműnek tűnik, hogy egy ilyen modell osztályozási teljesítménye várhatóan 50%.

Veszünk tehát 100 pénzérmét, és mindegyikkel elvégezzük az osztályozást a 100 soros adathalmazon. Mindegyikre kiszámoljuk az osztályozási pontosságot, majd kiválasztjuk a legjobb modellt, azaz a legpontosabb pénzérmét. Ebben az esetben szinte teljes bizonyossággal állíthatjuk, hogy a legjobb pénzérménk több mint 60%-os pontosságot fog produkálni.

Az analógia erőltetettnek tűnhet, de a sok modellkiértékelés nagy adathalmazokon is jelentős torzítást okoz. Egy adatbányászati projektben nem ritka, hogy egy modellt többféle paraméterezéssel is kipróbálunk, így olykor több száz vagy akár több ezer modell közül kerül kiválasztásra a legjobb. Ez az elemzői folyamat okolható azért is, hogy az adatbányászati versenyeken a versenyzők általában nagyobb pontosságúnak tartják a modelljüket, mint ahogy az a végső kiértékelésben teljesít. Minél kisebb az adathalmaz, annál nagyobb a kiértékelés bizonytalansága, és annál valószínűbb, hogy a sok kiértékelés során egyszer kiugróan jó eredményt fogunk kapni pusztán a kiértékelés szórása miatt.

Ezt a hibát azért is nehéz elkerülni, mert az adatbányász kísérletező típus és amint meglát egy eredményt, máris több módosítási ötlete van amit kipróbálna, viszont a kiértékelések során nő a valószínűsége, hogy egy véletlenszerűen jobban teljesítő modellt fog kiválasztani és annak a pontosságára fog számítani. Egy jó megközelítés lehet nagy adathalmazoknál, hogy egy végső kiértékelő adathalmazt is megtartunk magunknak, azonban ezzel a problémával tipikusan kisebb adathalmazok esetén szembesülünk, így ez nem járható út. A másik lehetőség, hogy két egymásba ágyazott keresztvalidációt végzünk. A belső keresztvalidáció az optimális(nak gondolt) modell megtalálásáért felel, míg a külső ennek pontosságát méri le. A részletek a cikkben megtalálhatóak.

Azt gondoljuk, hogy ezek a hibák nagyon tanulságosak, úgyhogy minden olvasót kérünk, hogy osszon meg velünk érdekes adatbányászati hibákat akár a modellkiértékelés, akár más adatbányászati folyamatok kapcsán. A történeteket itt a cikkek alatt megjegyzésként vagy emailben várjuk a prekopcsak(kukac)tmit.bme.hu címre.

Szólj hozzá!

A bejegyzés trackback címe:

https://adatbanyaszat.blog.hu/api/trackback/id/tr632237816

Kommentek:

A hozzászólások a vonatkozó jogszabályok  értelmében felhasználói tartalomnak minősülnek, értük a szolgáltatás technikai  üzemeltetője semmilyen felelősséget nem vállal, azokat nem ellenőrzi. Kifogás esetén forduljon a blog szerkesztőjéhez. Részletek a  Felhasználási feltételekben és az adatvédelmi tájékoztatóban.

Nincsenek hozzászólások.