Adatbányászat Blog

Az Adatbányász Blogon a dmlab szakértőinek írásait olvashatod a big data és data science területéről.

dmlab.hu - Big data és data science tanácsadás
"Ha örülsz, hogy fejedre nőttek az adatok."

Keress minket bátran:
- Nagy-Rácz István +36704595669
- Gáspár Csaba +36208234154
- info@dmlab.hu

Hírlevél

Iratkozz fel hírlevelünkre, hogy mindig naprakészen tudjunk tájékoztatni.
Feliratkozás
Leiratkozás

Címkék

10éves (1) 2007 (1) 2010 (23) 2011 (27) 2012 (13) 2013 (23) 2014 (5) 2015 (6) 2016 (10) 2017 (4) adaptív (1) adat- és médiainformatika (1) adatárusítás (1) adatbányászat (10) adatbányászati algoritmusok (1) adatbányászati alkalmazások (2) adatbányászati meetup (1) adatbányászati oktatás (1) adatbányászati technológiák (4) adatelemzés (1) adatelemzési platformok (1) adattárház (5) adattárház fórum (6) adattárolás (1) adattisztítás (1) adatvédelem (2) advise (2) aegon (1) aglitás (1) agy (2) ajánló (11) ajánlórendszerek (1) aktivitás felismerés (1) algoritmus (1) alkalmazás (3) állásajánlat (1) amazon ec2 (1) ambiens (1) ami (1) analitika (1) analytics (1) andego (3) apache (1) api (2) Arató Bence (3) bank (1) barabási (2) Barabási (2) beharangazó (1) beharangozó (18) bejelentés (2) belami (1) best practice (9) beszámoló (14) Bi (1) BI (3) bi (13) bi-trek (1) biconsulting (7) bigdata (22) Big Data (2) big data (5) biopen (1) biztosító (1) BI Akadémia (1) bi consulting (1) bi start (1) blog (5) BME (14) bme (2) bootcamp (1) brainstorming (1) bsp (1) budapest (1) business analytics (1) business analytics szakirány (1) churn (2) ci (1) címkefelhő (2) CIO (1) clementine (1) Clementine Consulting (1) cloud computing (2) cognos (1) credit scoring (1) crisp-dm (1) crm (2) csalásdetektálás (1) DataExpert (1) dataexplorer (1) datapest (1) datascience (1) data mining (1) data science (5) diplomamunka (1) dmla1o (1) dmlab (12) döntési fák (1) drill (1) e-commerce (1) előadás (21) előrejelzés (1) élő közvetítés (1) Enbrite.ly (1) energetika (1) esemény (2) esettanulmány (3) etikus (1) etl (2) évforduló (2) fejlesztés (2) felmérés (5) felsőoktatás (1) felület (1) felvásárlás (3) film (1) fizetés (1) forecasting (1) forgalomelőrejelzés (2) foursquare (1) fraud detection (1) freebase (1) gartner (2) gazdasagi informatikus (2) gépi tanulás (4) google (8) google analytics (1) graphlab (1) gravity (3) greenplum (1) gyakorlat (1) hadoop (10) hallgatók (2) hálózatelemzés (3) hálózatkutatás (2) hálózatok (3) hazai (2) hiba (4) hírlevél (2) hive (1) honlap (1) HR (1) HVG (1) i5 (1) ibm (6) ibm modeler (1) ibm spss (3) icdm (1) idc (2) idősor (1) idősorok (1) ieee (1) iir (1) infobright (1) információbróker (1) innováció (5) innovatívBI (1) innovativ bi (4) inspiráció (1) intelligencia (2) Internet Hungary (1) iqsymposium (19) iqsys (16) iroda (4) jelentkezés (2) jmp (2) kaggle (2) kampánymenedzsment (1) kapcsolati hálók (1) karrier (1) kdd (3) kdnuggets (2) képzés (4) kérdés (1) kérdőív (1) kerekasztal (1) keresés (1) kereső (1) keresztvalidáció (4) klaszterezés (2) knime (1) kockázati tőke (1) kollaboratív munka (1) kompetencia (1) konferencia (70) könyv (6) környezet (1) közlekedés (1) közösség (2) közösségi hálózatok (4) közvetítés (6) kritika (1) küldetés (1) kürt akadémia (1) kutatás (2) lemorzsolódás (1) licensz (1) live (1) logisztika (1) magyar telekom (2) mahout (1) mapreduce (1) marketplace (1) média (2) meetup (11) mellékspecializáció (1) mém (3) memóriacentrikus (1) menedzsment (3) metaadat (1) metodika (1) microsoft (1) mobil (5) mobil bi (4) modeler (2) modell (3) morgan stanley (1) motion chart (1) munkaerő (1) mysql (1) mytraffic (4) nemzetközi (5) nemzetközi összehasonlítás (1) netflix prize (1) networking (1) next big thing (1) nips (1) nosql (1) nyílt forráskód (4) nyomkövetés (1) offline áruházak (1) okostelefon (1) oktatás (23) olvasók (1) online áruházak (1) online kutatás (1) open source (19) open source bi (3) operatorfa (1) osbi (12) összehasonlítás (1) ötletek (2) pandas (2) paradoxon (1) pascal (1) pentaho (1) personal data mining (1) phd (2) philips (1) piac (3) pikk (1) pilot (1) PISA-felmérés (1) pmml (1) politika (2) powerpivot (1) prága (1) praktiker (1) prediktív analitika (2) prediktív analitka (1) prediktív modellezés (1) prediktiv modellezés (5) prezi (15) privacy (1) privacy preserving data mining (1) projekt (1) projektmenedzsment (4) publikáció (1) python (9) radoop (12) random forest (1) rapid-i (2) rapidanalytics (7) rapidminer (40) RapidMiner (2) rcomm (7) refine (1) Rexer Analytics (1) rsctc (1) R nyelv (7) saas (1) sap (1) SAS (20) sas enterprise miner (2) sas enterpris guide (1) sas entprise miner (1) sas fórum (1) sas forum (3) siker (3) simptech (1) sixtep (2) smarthabits (1) spike sorting (1) sportanalitika (1) spss (13) SPSS (3) spss clementine (3) spss hungary (5) spss modeler (6) ssd (1) starschema (2) startup (9) statisztika (1) survey (1) svm (1) szabad szoftver (1) szakmai (1) szavazó eljárások (2) szélenergia (1) szélerőmű (1) szervezetfejlesztés (1) szociális hálók (1) szoftver (5) szöveg (1) szövegbányászat (2) sztaki (2) tableau (1) talend (2) támogatás (1) tanulmány (1) tanulság (1) távolság (1) technológia (1) tedx (1) telekommunikáció (2) teradata (2) teszt (1) text mining (1) tmit (6) toborzás (1) tőzsdei előrejelzés (1) tracking (1) trendek (8) tudományos (1) tunedit (1) twitter (17) ügyfél (1) üzleti intelligencia (3) üzleti modell (3) üzleti reggeli (3) választható tárgy (1) validáció (4) válogatás (1) válság (1) változás (1) vélemény (1) véleméy (1) verseny (20) vezetői képzés (1) videó (3) vizualizáció (5) web (4) web2 (2) webanalitika (3) webshop (1) weka (2) wikipedia (2) workshop (1) yahoo (2) Címkefelhő

TWitter a csapat tagjaitól

2017.08.30. 17:25 Gáspár Csaba

Őszi data science választható tárgyak - Nem csak BME hallgatóknak

Címkék: oktatás bme jelentkezés tmit 2017 bigdata választható tárgy datascience

(Hallgatóknak rövidítve:)

BME választható tárgyak hiteles előadóktól:

- Alkalmazott adatelemzés (K-Cs 12h) minden órán laptopoddal dolgozol, Python, R és SAS + data science és gépi tanulás alapjai
- 'Big Data' elemzési eszközök nyílt forráskódú platformokon (Sz 12h) Hadoop, Spark, teljes big data stack

Go to Neptun!

a.jpg

(Külsősöknek, részletek után érdeklődőknek)

Idén is meghirdetjük a BME-n tartott legfontosabb tárgyainkat külsősök számára is. Ez azt jelenti, hogy a műegyetemista hallgatókkal együtt szeptember elejétől 14 héten keresztül lehet a data science és a big data világába betekintést kapni. 

A kezdeményezés igen népszerű, de a helyek számát korlátozzák (1) a rendelkezésre álló termek méretei, illetve (2) az az elvünk, hogy nem engedünk be több külsős érdeklődőt a tárgyra, mint ahány egyetemi hallgató jelentkezett az órára.

 

Ha az adatelemzéssel kapcsolatos programnyelvekhez szeretnél érteni

Tárgy neve: Alkalmazott adatelemzés (Applied Data Analytics, azaz ADA)
Kedd és csütörtök 12-14h
Terem: Lágymányosi kampusz, Magyar tudósok körútja
Tárgy hivatalos tematikája

Az iteratív módon fejlesztett adatfeldolgozó eljárások vannak a középpontban, az adatelemzés programozási nyelveit tanítjuk nektek. A téma a data science alapfeladatainak megoldása abban az esetben, ha valamilyen programozási nyelven kell megoldani a problémát: SAS programozási nyelvet, Python és R programozást tanítunk úgy, hogy az órákon mindenki a saját gépén ugyanúgy készíti a programkódot, mint az előadó a kivetítőn. Igazi közös gondolkodás, szemléletátadás is így válik lehetségessé, hiszen itt tényleg bezavarnak a valós adatok sajátosságai, nem minden csodaszép, mint a machine learning könyvekben. 

Ha a big data technológiák dzsungelében szeretnél tájékozódni

Tárgy neve: 'Big Data' elemzési eszközök nyílt forráskódú platformokon
Szerda 12-14h
Terem: Lágymányosi kampusz, Magyar tudósok körútja
Tárgy hivatalos tematikája

Itt a Dmlab big data szakemberei adnak betekintést a területen kialakult technológiai stack felépítésébe. A MapReduce, Hadoop alapoktól indulunk, és a legújabb technológiákig jutunk el. Nyilván mindben teljesen nem fogunk tudni elmélyedni, de aki ezt a kurzust végighallgatja, az könnyen fog tájékozódni a big data technológiák között. A félév végén egy ZH és egy házifeladat alapján kapnak jegyet a hallgatók, külön kérésre a külsős kollégák is megmérettethetik magukat ezeken a számonkéréseken.

Mindkét tárgyra itt tudtok külsősként jelentkezni: JELENTKEZÉS

A jelentkezés alapvetően jelentkezési sorrendben történik, várhatóan a hét végén fogunk eredményt hirdetni. A hírlevélre feliratkozók között már néhány nappal korábban már kiküldtük az információt. A részvételnek nincs külön feltétele, a kurzuson való részvétel ingyenes. Van lehetőség arra is, hogy hivatalosan beiratkozz néhány tízezer Forintért a BME-re erre a tárgyra, ebben az esetben hivatalosan le is vizsgáztatunk, és mint hallgató vehetsz részt a tárgyon. 

Szólj hozzá!

A bejegyzés trackback címe:

http://adatbanyaszat.blog.hu/api/trackback/id/tr6412791034

Kommentek:

A hozzászólások a vonatkozó jogszabályok  értelmében felhasználói tartalomnak minősülnek, értük a szolgáltatás technikai  üzemeltetője semmilyen felelősséget nem vállal, azokat nem ellenőrzi. Kifogás esetén forduljon a blog szerkesztőjéhez. Részletek a  Felhasználási feltételekben.

Nincsenek hozzászólások.